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Abstract--The heat transfer, friction and mechanical (elastic) interaction between an external laminar flow 
and a solid surface covered by a layer of fibers is investigated numerically. The flow is initially perpendicular 
to the surfa.ce, and the fibers can bend. The study has two parts. In the first part it is assumed that the 
fibers are inflexible. It is shown that the effect of the fiber layer on the overall heat transfer can be correlated 
in terms of the fraction of the external flow that penetrates into the fiber layer. The second part focuses on 
the effect of fiber bending, which is described by a new dimensionless group: the stiffness number 
S = EI/(pU~L4). It is shown that the wall heat transfer, friction and fiber layer flow fraction exhibit a 
sudden decrease when S drops below a critical value, So. The critical stiffness number can be correlated as 
Sc = C(H/L) 5(D/H)2/(1 -~b), where C is a constant of order 0.4, H and D are the fiber length and diameter, 

L is the half-length of the solid wall, and ~b is the porosity of the fiber layer. 

INTRODUCTION 

In this paper we document  the fundamental  friction 
and heat transfer characteristics of  a surface covered 
by a layer of  flexible fibers. The associated forced 
convection phenomenon has important  applications 
in several fields, for example the enhancement of  heat 
transfer [1], the control of  the boundary layer [2, 3], 
heat and mass transfer from plant canopies [4], and 
biological oceanogrophy, where suspension feeders 
and plant life are affected by the local flow behavior 
[5]. Our own interest in surfaces covered with flexible 
fibers was stimulat.ed by questions of  how to maximize 
the insulation effect of  hair on mammals  [6]. 

The model  and flow configuration described in this 
paper have as their starting point the recent work 
on modelling corwection through porous media in 
contact with fluids. In natural convection, the inter- 
action between the flow through the porous medium 
and the flow of  the pure fluid was documented by 
Poulikakos [7] and Sathe et al. [8]. Forced convection 
was documented by Vafai and Kim [1], Vafai and 
Thiyagaraja [9], and Poulikakos and Kazmierczak 
[10]. Relative to these studies and our own work on 
surfaces covered with hair [6], the present study 
focuses on two new aspects : 

(1) the fibers that form the porous layer are flexible, 
and 

(2) the external flow is originally perpendicular to 
the surface. 

Aspect (1) deserves scrutiny because when the fibers 
are flexible the interaction between the porous med- 
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ium and the external fluid is more complex than when 
the fibers are rigid. The flow that penetrates the porous 
layer can change the local properties (directional per- 
meabilities) of  the solid matrix, which in turn influence 
the flow. 

Aspect (2) is a more realistic geometric feature of  
the flow past a finite-size body covered with fibers 
(e.g. the body of  a mammal).  The approaching fluid 
strikes the body perpendicularly, penetrates the fiber 
cover in the stagnation region, and later flows parallel 
to the surface and around the body. 

THE PHYSICAL MODEL 

The outer f low 
To study the effects of  fiber cover and fiber bending 

we selected the convection heat transfer configuration 
shown in Fig. 1. The flow enters the computat ional  
domain (y = Y0) with uniform velocity (U~) and tem- 
perature (Tc). The solid impermeable wall (y = 0) is 
maintained at a different temperature (Th). The flow 
and temperature fields are symmetric about  x = 0. In 
the region above the fibers (y > H), the flow is gov- 
erned by the Navier-Stokes  equations. The steady- 
state conservation of  mass and momentum for incom- 
pressible flow are 

~u ~v 
+ = = o (1)  

dx oy 

gu + v ~ y  = 1 Op /'t?2u c~2u~ 
v + 

u ~x P @ I- v \0x2 + O ~ )  (3) 
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NOMENCLATURE 

heat transfer area in 1 rev [m 2] 
dimensionless heat transfer area 
sum of fiber cross-section in 1 rev [m 2] 
Biot number 
specific heat at constant pressure [kJ 
kg - j  K -I] 
coefficient for the critical stiffness 
number correlation (51) (Fig. 14) 
average skin friction coefficient 
deflection of fiber segment [m] 
fiber diameter [m] 
modulus of elasticity [N m -2] 
force components IN] 
heat transfer coefficient [W m -2 K -  1] 
height of unbent fibers [m] 
area moment of inertia [m"] 
fluid thermal conductivity [W m - l  
K -l]  

fiber thermal conductivity [W m -  
K -l]  

Kxy, K±, KII perrneabilities [m 2] 
half-length of plane wall [m] 
penetrating flow fraction 
moment [N m] 
number of fibers in 1 rev 
number of fiber segments 
average Nusselt number 
pressure [N m -2] 
sum of wetted perimeters in 1 rev [m] 
dimensionless sum of perimeters in 1 
rev 
dimensionless pressure 
position vector [m] 
Prandtl number, v/~ 
heat flux [W m -2] 

rev representative elementary volume 
ReL Reynolds number 
Re v porous medium Reynolds number 
s curvilinear coordinate [m] 
S stiffness number 
Sc critical stiffness number 
T temperature [K] 
u, v velocity components [m s-1] 
U, V dimensionless velocity components 
Uo~ approach velocity [m s-l]  
Vrev volume of 1 rev [m 3] 
W width of plane wall [m] 
x, y coordinates [m] 
X, Y dimensionless coordinates. 

Greek symbols 
fluid thermal diffusivity [m 2 s-1] 

fl fiber angle (Fig. 2) 
~c critical fiber angle 
7j local fiber angle at node j  
0 dimensionless temperature 
# viscosity [kg s-1 m 1] 
v kinematic viscosity [m 2 s-i]  
p fluid density [kg m -3] 
# stress vector [N m -2] 
q~ porosity. 

Other symbols 
( )b bare wall 
( )o cold fluid 
( )h hot wall 
( )f fluid in the fiber layer 
( )s solid matrix (fibers) 
( )" per unit area 
(~) dimensionless. 

with the following boundary conditions in the plane 
of symmetry : 

dv 
u = 0  ~ x = 0  at x = 0 .  (4) 

The pressure was set equal to an arbitrary constant 
(p = 0) at x = L and y = Y0- The velocity components 
(u, v) were matched at the y = H(x)  interface with the 
volume-averaged velocity components (uf, vr) of the 
flow through the layer with fibers : 

u-=ur v = v f  at y = H ( x ) .  (5) 

The selection of velocity boundary conditions for the 
interface between a fluid and a porous medium satu- 
rated with the same fluid has generated considerable 
amount of work, which is reviewed in ref. [11]. 
According to the criteria developed by Vafai and Tien 
[12] we do not need to include the Brinkmann term in 
our porous flow model. It was shown by Vafai and 
Thiyagaraja [9], however, that one cannot match 

shear stresses across the interface without the 
inclusion of the Brinkman term. If one does not match 
shear stresses then one has to account for the possi- 
bility of a slip in the tangential velocity of the pure 
fluid at the interface, as was demonstrated by Beavers 

y %% 
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Fig. 1. Two-dimensional flow against a plane surface covered 
with fibers. 
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and Joseph [13]. In this problem the flow is mainly 
perpendicular to the surface; therefore the pressure 
field, which drives the flow within the porous layer, is 
not a strong function of the frictional drag at the 
surface. The pres,;ure field is almost completely deter- 
mined by the decrease in the vertical momentum of 
the approaching fluid. The result of this is that the 
problem is insensitive to the degree of slip at the fluid- 
porous interface. Numerical tests indicated that, if the 
no-slip condition is replaced with a free-slip condition, 
the resulting change is never greater than 2% in the 
frictional drag experienced at the wall, or in the heat 
transfer. 

The velocity boundary conditions for the flow out 
of the computational domain (x = L) were 
02u/Ox 2= 0 and OEv/Sx 2 = 0. The insensitivity of 
numerical results to the specification of outflow 
boundary conditions has been demonstrated by 
numerous researchers (e.g. Huang and Vafai [2] and 
Vafai and Kim [1]). These conditions were compared 
with the zero stress conditions p - 2 #  Ou/~x = 0 and 
Ov/~x = 0 at x = L. The results for wall friction were 
the same for both sets of boundary conditions, but 
the zero stress condition caused velocity oscillations 
at the outlet. 

The energy conservation equation and boundary 
conditions for the region with pure fluid are 

aT OT [02T ~2T'X uff~x -l-vff~y = ~ ~ + ~-~y2 ) (6) 

t3T 
8x 0 at x = 0  T = T ¢  at y Y0 (7) 

02T 
= 0  at x = L  T = T r  at y = H .  (8) 

Ox 2 

In the last of equations (8), the fluid temperature is 
matched to the porous medium temperature (Tf) at 
the interface between the two regions. Not shown is 
the energy continuity equation, in which the heat 
fluxes are matched across the y = H(x) interface. 

K, - l n  (l - ~b)- ~b- ~b2/2 
- -  - ( 1 0 )  
D 2 16~b(1 -~b) 

This correlation is valid for ~b > 0.8 and for fibers 
arranged in an equilateral triangular array. 

By analogy with the irreversible thermodynamics 
of heat conduction through an anisotropic medium 
[16], the Darcy flow equations for the general case 
where the flow is not parallel to the fibers (fl # 0, Fig. 
2) are 

where 

uf=  (11) 
g ax ~ @ 

Kxv @ Ky @ 
vr= (12) 

Kx = Kl  cos 2 fl+Kir sin 2 fl (13) 

Ky = K± sin 2 f l+K, cos 2 fl (14) 

Kxy = ( K , - K D  sinflcosfl. (15) 

When equations (11) and (12) are substituted into 
the mass conservation equation for the fiber region, 

~Uf ~Z)f 
~x  ÷ ~y  = 0. (16) 

the result is a partial differential equation for the pres- 
sure field : 

aKx aK~'~ @ a2p (aK~ aK~\ @ 
k ax 

02--~P +2Kxy a2p 
+ Ky oy 2 ax ay - O. (17) 

This equation allows for the fact that the per- 
meabilities vary from one rev to another inside the 
fiber region. The boundary conditions for equation 
(17) are 

ap 0 at x = 0  (18) 
0x 

The layer with fibers 
It was assumed that the flow in the region with fibers 

(0 < y < H) is in the Darcy regime. In a representative 
elementary volume (rev) [11] within this region, the 
solid matrix is a bundle of parallel equidistant fibers 
of diameter D. The volume-averaged flow direction 
almost never coincides with the local (rev) fiber direc- 
tion because the outer flow is not uniform and the 
fibers can bend. When the flow through the fibers is 
perpendicular to tlhe fiber direction, the permeability 
may be estimated using [14] 

K~ = 125 L(1-@)2J - (9) 

In the opposite extreme, when the flow is parallel to 
the fibers, the permeability has been correlated by 
Sparrow and Loeflter [15]: 

@ 0 at y = 0  (19) ay 

p = p ( H )  at x = L  (20) 

and the condition that p is continuous across the 
y = H interface, which is the fourth boundary con- 
dition needed. The pressure p(H) is provided by the 
solution to the pure fluid part of the flow field. The 
constant pressure condition (20) is the better of two 
conditions that were tried at x = L. The difficulty 
associated with equation (20) is that it forces vf = 0 at 
x = L. This feature causes a sharp change in the ver- 
tical velocity component across the y = H interface is 
Re L is large. The alternative to equation (20) was 
@/Ox = constant at x = L. This was superior in cases 
where the fibers did not bend, but when the fibers bent 
a region of highly negative pressure formed around 
x = L and y = 0. This was not acceptable given that 
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p = 0 was the ambient pressure, so the constant-p 
condition (20) was adopted, It must be said that either 
condition, constant  p or constant Op/t?x, led to similar 
results for friction and heat transfer over the wall 
region 0 < x < L : the relative error between the two 
sets of results decreased from 10% at L / H  = 2 to less 
than 1% at L / H  = 5. In these L / H  ratios, H is the 
original height of the fiber layer before it is deformed 
by the flow, or simply H evaluated at x = 0 (Fig. 13). 

We now turn our attention to the thermal aspects 
of the model. In each rev, the temperature is rep- 
resented by two values, the temperature of the solid 
(the fibers, T~) and the temperature of the interstitial 
fluid (Tf). The conduction of heat along the fiber is 
described by the unidirectional fin conduction model : 

OaTs 
h ~ ( T f -  T 0 0 (21) k ~ - s 2  + = 

where s ~s the curvilinear coordinate measured along 
the fiber (s = 0 is the base). In each rev cut per- 
pendicular to the fiber direction, the sum of all the 
fiber wetted perimeters is ps, and the sum of all the 
fiber cross-sections is A~. For each local angle of fiber 
inclination/~, the ratio ps/A~ is a constant  dictated by 
the fiber diameter and the fiber density (or the porosity 
q5 along the y = 0 wall, where all the fibers are per- 
pendicular to the wall). 

The equation for the conservation of energy in the 
interstitial fluid is 

uf O Tr + vr ~Tf [o2rf  02 T,.~ 

h Aht 
+ - - ~ ( T ~ - T 0  (22) 

pCp 

where V~ev is the rev volume, and Aht/(dpVr~,~) is the 
ratio of the total fiber-fluid contact area present in 
the rev, divided by the volume inhabited by fluid in 
the rev. The thermal diffusivity c~ refers to the fluid 
alone, ~ = k/(pep). The heat transfer coefficient 
appearing in equations (21) and (22) was estimated 
based on the low Reynolds number  correlation 
developed in ref. [14], where it was found that in the 
range 0 ° </~ < 60 ° the effect of/~ on h is negligible : 

h / U  D \  °1~ 
h =  (8.46 - 6.8q~) ~ / Y - ~ -  ) . (23) 

This correlation is valid in the range 0.9 ~< q5 ~< 0.95, 
1 <~ U~D/~x <<, 30, and 0.72 ~< Pr <~ 100. The bound- 
ary conditions for equations (21) and (22) are 

T ~ = T r = T h  at y = 0  (24) 

0T~. 
~ ? ~ = 0  at x = 0  and x = L  (25) 

T r = T  at y = H  (26) 

OT~ 
- 0 at the fiber end. (27) 

~?s 

Worth noting are : the outflow condit ion OTf/Ox = 0 
at x = L, which is commonly used in numerical studies 
of convection in porous media with permeable walls 
[17-20], the fluid temperature continuity across the 
y = H interface [equation (26)] and the assumption 
that each fiber is slender enough so that the heat 
transfer through its tip can be neglected [equation 
(27)]. 

The equations and boundary conditions described 
until  now were nondimensionalized by defining 

(U, Uf) - -  (b/,Uf)u~ (V, Vf) = (v, VO U~L (28) 

x y p 
X = Z Y = H P = ---pU 2 (29) 

(T, Tf, Ts) - Tc 
(0, 0r, 00 - (30) 

r h - T c  

For brevity, we omit the dimensionless equations and 
boundary  conditions, and note that they contain the 
following dimensionless groups : 

Uo~L v L 
ReL = - -  Pr = - A = - -  (31) 

v ~z H 

hL Aht AhtL hL psL (32) 
NUL = T -- 4)Vrev Bi = ~ ffs = A--~" 

The fiber shape 
The third component  of the model contains the 

equations needed for calculating the shape of the 
fibers. This component  is based on the observation 
that in Darcy flow the pressure gradient in the fluid is 
balanced by the forces exerted on the solid matrix. We 
assume that the fibers do not  touch, i.e. that each fiber 
acts independently of all other fibers. Consider a small 
volume dx dy W that contains at least 1 rev, where 
W >> L is the dimension perpendicular to the plane of 
Fig. 1. The components of the total force experienced 
by the solid parts (fiber segments) found in this vol- 
ume are 

~p ~p 
F x =  - ~ x d x d y W  F y =  - ~ y d x d y W .  (33) 

The number  of fibers that pass through this volume is 

n = (cos fl dx + sin fl dy) W 1 - q~ (34) 
reD2~4 

where (1-dp)/(~D2/4) is the fiber density (num- 
ber/area) in the plane perpendicular to the local fiber 
direction. Dividing equations (33) by n yields the com- 
ponents of the local load experienced by a single fiber. 
These forces can be arranged into a stress vector #:  
the normal and tangent forces exerted at a certain 
point(s) on the fiber are obtained by performing the 
scalar product between # and the unit  normal and 
unit  tangent vectors. 

Each fiber was divided into many small segments 
(N), typically N - -  50. The forces were modelled as 
acting on the ends of each segment. Each small 
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segment, therefore, behaved as a beam undergoing 
small deflection. The normal and tangential forces 
were transferred down the fiber according to the equa- 
tions 

FNj = #j-l~j+ (l~j. lqj+l )FNj+ 1 + (~j.  Ti+ 1 )FTj+ 1 

(35) 
FTj = #1 . L + ( L . L + I ) F ~ + ,  + (L.S/+I)FN/+,  

(36) 

where the unit normal N is defined as (cos f l j , -sin fli) 
and the unit tangent i" is defined as (sin flj, cos flj). 
Following the method of Knight and Barret [21 ], these 
forces can be used to calculate the deflection of each 
fiber segment, and thereby build up the shape of the 
entire fiber. 

Figure 2 illustrates the node placement relative to 
one fiber segment:, where yj is the local fiber angle at 
node j. The angle fl associated with the j th segment 
is the angle between the y-axis and the straight line 
segment joining the j and j-t- 1 nodes. The fiber seg- 
ments that join the nodes are not necessarily straight. 
The mass stations that would be present in a time- 
dependent beam analysis are not necessary because in 
this study we are concerned with the steady state. Only 
the elastic elements are represented : 

? /=  AY/+y/ 1 (37) 

MjAs FNj(As) 2 
a~, = ~ -  + 2 ~  (38) 

M = Mj+ l + AsFNj+ i. (39) 

In equations (38) and (39) As is the length of the 
fiber segment, E is the elastic modulus, I = nD4/64 is 
the area moment of inertia, and M~ is the bending 
moment at node L Equations (35)-(39) and the end 
conditions y = 0 at s = 0, and MN = 0 at the free end 
are sufficient for calculating all the ~js. To calculate 
the position of each node, we calculate the end deflec- 
tion of each segment : 

- Mj(As)22~I- + FNi(As)33~ (40) 

The position vector for node j  is 

y 

I~  P~node j+l 

/ \ fiber segment j 

dej 
Fig. 2. The deflection of one fiber segment. 

Pj = AsT(Tj-,)+df'l(Tj_,) (41) 

where t and lq are the tangent and normal vectors 
calculated in terms of the angles 7j rather than flj. The 
local fiber angle can be calculated for each segment : 

~ j - - I  = tan-1 _ ~ - (42) 
\Pj., - P(j- i).~ / 

where Pj>. refers to the y-position of the jth node, and 
Pj,. refers to the x-position of the jth node. These 
equations were also nondimensionalized, and this 
brought to light a new dimensionless group that 
describes the relative stiffness of the fibers : 

EI 
S = P g 2 L~. (43) 

THE NUMERICAL METHOD 
The equations governing the flow in the pure fluid 

region were solved using finite differences and ADI. 
The pressure field was solved in order to force the 
conservation of mass using the auxiliary potential 
method [22]. The grid in the pure fluid region was 
uniform in x, but variable in y, so that a large number 
of grid points could be put in the boundary layer near 
the porous interface (Fig. 3). A shearing trans- 
formation was used to map the nonrectangular physi- 
cal domain, which occurs when the fibers bend, onto 
a rectangular computational domain. The robustness 
of the solver was increased dramatically by including 
an artificial viscosity that was non-zero only in a 
region with positive v. There is no artificial viscosity 
in the final results because all the solutions are char- 
acterized by negative v velocities. 

The pressure field in the layer with fibers was also 
solved using finite differences and ADI. The grid in 
the porous region was uniform in x and y in com- 
putational space (Fig. 3). Another shearing trans- 
formation was used to map the irregular porous 
domain onto a rectangular computational space. 

The equations for the fluid temperature were solved 
using ADI on a non-sheared grid, with the same grid 
point placement as the fluid equations when the fibers 
were unbent. The temperature in the solid was deter- 
mined using time stepping with the trapezoidal rule 
until convergence was reached. 

The pure fluid velocity solution was iterated until 
the relative error (maximum change in velocity div- 
ided by the time step) was less than 0.1. The auxiliary 
potential solver was then iterated until its relative 
error became less than 0.001. Then the porous pres- 
sure field was solved, using the new pressure boundary 
conditions provided by the auxiliary potential solu- 
tion. The porous pressure field was iterated until its 
relative error was less than 0.0001. When the fibers 
were bent, convergence testing indicated that a relative 
error of 10 -5 was necessary. 

The cycle continued until the average value of the 
auxiliary potential function was less than 0.001 (which 
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Y 
- -  2 

k 

x/l_ 
Fig. 3. Example of the grid used (Rec = 1000, L/H = 2, ~b = 0.9, HID = 20). 

indicates that continuity is being satisfied). All of these 
tolerances were determined doing convergence testing. 
In all cases, dividing any of the above convergence 
criteria by 2 resulted in a less than 1% change in the 
calculated friction force on the y = 0 surface. Two 
additional accuracy criteria that were met are that 
global mass conservation must be satisfied to better 
than 1%, and that mass conservation within the 
porous layer must be satisfied within 1%. The latter 
criterion was relaxed to 3 % when the fibers underwent 
significant deformation. It was also found that setting 
y0 = 4L made the solution insensitive to further 
increases in the height of the computational domain. 

Similarly, the fluid temperature was advanced by 
one time step (the size of  which was determined by 
stability criteria) and then the solid temperature was 
iterated until convergence was reached, and the fluid 
temperature was advanced again. The system gen- 
erally conserved energy to within 1% if the relative 
fluid temperature error was less than 0.001. In cases 
where the total conservation of  energy was not sat- 
isfied to within 3%, error bars are attached to the 
plotted results. 

Grid refinement tests were performed, The final grid 
was chosen such that further grid doubling in any 
direction resulted in a less than 1% change in the 
calculated surface friction. The final grid for 
ReL = 500 was 101 points in x for both the porous and 
non-porous regions, 81 grid points in y for the pure 
fluid region, and 50 grid points in y for the porous 
region. An example of the mesh used for a solution in 
which the fibers are bent is illustrated in Fig. 3 : note 

that the height of the porous layer decreases as x 
increases, because the fibers bend. 

SURFACE WITH INFLEXIBLE FIBERS 

Before examining the effect of  fiber bending on fric- 
tion and heat transfer, it is necessary to understand 
the convection mechanism when the fibers do not 
bend. How stiff the fibers (or how large S) must be in 
this limit is one of the results presented in the next 
section. 

The independent parameters in the system are Rec, 
Pr, the porosity of the fiber layer ~b, the aspect ratio 
L/H, the fiber height to fiber diameter ratio H/D, and 
the ratio of solid to fluid conductivities kdk. In this 
study the fluid is assumed to be air, Pr = 0.72. If the 
fibers are hairs in air then ks/k "~ 10. We considered 
several Rec values between 500 and 2000, several 
porosities between 0.9 and 0.95, HID ratios of 20 
and 50, and aspect ratios L/H = 1-5. The results are 
presented in terms of overall quantities : the average 
skin friction coefficient 

S~ F. dx fn t3P dy 
Cf--  1 2 where F~ = (44) 

~ p U ~ L  .Jo - ~ 

and the average Nusselt number 

L ir 

hL So q [y=0 dx (45) 
NUL = ~ -  where h= (Th--T¢)L 
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Fig. 4. The average., skin friction coefficient for a wall with 

inflexible fibers. 
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0.95 

Figure 4 shows that the average skin friction 
coefficient depends mainly on L/H, and is roughly 
inversely proportional to L/H. The insensitivity of Cf NUL 1 
to changes in ReL, q~ and HID is particularly evident NUL h 
when L/H > 2, although minor even when L/H < 2. 
The effect of increasing HID is to increase Cr, while 
the effect of increasing ~b is to decrease Cf. 0.5 

The results for heat transfer are more complicated. 
Figure 5(a) shows the effect of the porosity and the 
Reynolds number: the total heat transfer rate 
increases with both ff and ReL. More interesting is the 0 
alternative shown in Fig. 5(b), where NUL/NUL,b is the 
ratio between the actual NUL value [Fig. 5(a)] and the 
value calculated for the same ReL in the limit where 
the wall surface is bare (no fibers, or L/H ~ ~). Inter- 
esting is how the ratio NUL/NUL,b compares with 
1. Below a critical porosity [roughly 0.94 in Fig. 
5(b)], the fibers provide an insulation effect, and 
NUL < NUL.b. Above the critical porosity, the per- 
meability of the porous layer is sufficiently high, and 
the cold flow entering from above is sufficiently strong, 
that the fibers act as fins surrounded by cold fluid. In 
this regime the fibers augment the heat transfer from 
the wall, NUL > NUL.b. These two extremes, i.e. the fact 
that hair-like fibers provide insulation in some cases 1 
and augmentation in others, confirm the main point 
of the theoretical work or surfaces covered with hair Nu L 0.8 
[6]. That a porous layer can cause the augmentation LNu~,b 
of heat transfer was also found by Vafai and Kim [1] 0.8 
for flow parallel to a wall. 

The effect of ReL on the heat transfer is illustrated 0.4 

in greater detail in Fig. 6. The heat transfer through 
the wall with fibers increases almost proportionally 0.2 
with ReL. This increase is steeper than when the wall 
is bare, because NUL/NUL.b also increases with L. In 0 
conclusion, the faster flow (higher ReL) removes more 
heat because of two effects : (1) cold fluid comes closer 
to the wall, as in the case of a bare wall ; and (2) the 
fibers provide a finning effect. 

Figure 7 shows the end result of a search [14] for a 

o 

Re L - 1500 o . 
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Fig. 5. The average Nusselt number for a wall with inflexible 

fibers. 
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Fig. 6. The effect of Reynolds number on heat transfer when 

the fibers do not bend. 
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way to correlate the numerical heat transfer results 
for surfaces covered with stiff fibers. The parameter 
chosen on the abscissa is mL/H, where m is the fraction 
of  the total external flow (U~L) that penetrates into 
the fiber layer : 

m = ( -  v)). = t/dx. (46) 

The numerical NUL/NUL,b data correlated in Fig. 7 
cover the range 0.9 ~< 4' ~< 0.95, 500 ~< ReL <~ 2000, 
HID = 20 and 50, and L/H = 1-5. The line 

/ L \  0-4 
NuL = 1 . 5 8 | m H | \  J --0.051 (47) 

N U L , b  

approximates the data with a mean error of  5.2%. 
It is to be expected that equation (47) will fail in 

the limit mL/H --, O, where there is no flow through the 
fiber layer. In that limit the Nusselt number reaches a 
minimum value, NUL,min, which can be evaluated based 
on the parallel thermal resistance model  (trapped fluid 
in parallel with fibers) 

(48) 

I f  the NUL value calculated with equation (47) is less 
than NUL,min, then the correct value is NULmin given by 
equation (48). To illustrate this observation, consider 
the leftmost datum (a square) plotted in Fig. 7 : that 
point corresponds to 4' = 0.9, L/H = 2, HID = 50 
and ReL = 500, for which equation (48) yields NUL,mi n 
= 2.8. This means that NULmin/NUL, b = 0.26, which 
is greater than the ratio found using equation (47), 
NUL/NUL.b = 0.2. The actual NUL value determined 
numerically is 2.9, which is very close to NUL,min ---- 2.8 
given by equation (48). 

To calculate the heat transfer based on the cor- 
relation (47) or Fig. 7, we need a way to predict mL/H. 
Figure 8 shows the correlation 

mL/H _ 0.0476RepL v _ 0.029 (49) 
cf, b 

where Cf, b is the average skin friction coefficient for 
the bare wall. The mean error between the data and 
equation (49) is 18.6%. The abscissa parameter is the 
Reynolds number used in convection through porous 
media [23], namely Rep = U~K'/2/v. 

The skin friction and heat transfer correlations for 
the bare-wall limit are presented in Fig. 9. The dashed 
line shows an empirical correlation developed by Spar- 
row et al. [24] from experiments measuring mass trans- 
fer from a plate 2½ times as wide as it was long, which 
was subjected to incident flow at angles from 25 ° 
to 90 ° . The form of their correlation is 
NUL = 0.939Re~J/2 Pr 1/3 ReL, where L* = 4A/C, A is 
the plate area, and C is the plate circumference. Spar- 
row et al. found that by using ReL. in the correlation 
they eliminated almost entirely the geometric depen- 
dence of  NUL. Their experiments showed, however, 
a small geometric dependence for the leading factor 
(0.939 above) : this factor increases as the width of  the 
plate increases. In their experiments, the NUL increase 
from a narrow plate (width/length = 0.4) to the wider 
plate was 9%. This change is consistent with the 12% 
difference between the dashed line and our NUL results 
(the solid line), because our results are for a plate of  
infinite width. 
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Fig. 9. Skin friction and heat transfer results for the bare 
wall limit (Pr = 0.72). 
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THE EFFECT OF FIBER BENDING 

We examined the effect of  fiber bending by varying 
the stiffness parameter S. We considered three cases : 

(ReL = 500, L/H = 1, (k = 0.9, HID = 20), 

(Re, = 1000, L/H = 2, ¢ = 0.9, HID = 20) 

and 

(ReL = 2000, L/H = 4, ¢ = 0.95,11/0 = 20). 

The selected ¢ and HID values are such that a sig- 
nificant fraction of the external flow penetrates into 
the fiber layer. The characteristics of  the fiber cover 
on the L/H = 1 and L/H = 2 surfaces are identical, 
so they correspond physically to two surfaces with 
identical covering, but with different lengths, L and 
L/2, respectively. The maximum fiber bending cal- 
culated was/3 = 20 ° for L/H = 1,/3 = 40 ° for L/H = 2 
and/3 = 38 ° for L/H = 4. 

Figures 10-12 illustrate the effect of  fiber bending 
on the skin friction, heat transfer and flow penetrat ion 
into the fibers. In the geometries considered the tran- 
sition from 'no S effect' to 'substantial S effect' is 
fairly abrupt. More  flexible fibers (lower S values) 
mean smaller Cf, NUL and m values. 

Figure 10 illuslrates the effect of  fiber bending on 
skin friction. For  the three surfaces the effect is sig- 
nificant. The decrease in Cf from the case of  no bend- 
ing to the maximum bending calculated is about  15% 
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Fig. 11. The effect of fiber stiffness on heat transfer. 

in all cases (specifically, 14, 18 and 15% for L/H = 1, 
2 and 4, respectively). Figure 11 shows, however, that 
the effect of  fiber bending on NUL is small. The total 
decrease in NUL is 5, 8 and 6% for the three surfaces. 
F rom the result for surfaces with inflexible fibers one 
might conclude that the magnitude of  the penetrating 
flow m must also be insensitive to the fiber bending. 
Examination of  Fig. 12, however, shows that this is 
not  the case. 

The effect of fiber bending on the flow penetrating 
the fiber layer (m) is shown in Fig. 12. The effect is 
quite large : 45% for L/H = 2 and 43% for L/H = 4. 
According to the relationship developed for predicting 
NUL based on m for a surface covered with inflexible 
fibers [equation (47)] a 45% decrease in m should 
result in about  a 21% decrease in NUL; but, as was 
shown in Fig. 11, NUL actually decreases by only 5 -  
8% while m decreases by 43-45%. This suggests that, 
while less flow enters the fiber layer as a whole, the 
flow must be penetrating to the warm surface at a rate 
roughly independent of  fiber bending. 

A possible explanation for this is that when the 
fibers bend they orient themselves in a direction closer 
to perpendicular to the downward coming flow : this 
decreases the layer's permeability. At  the same time, 
however, the spreading of  the fibers causes an increase 
in porosity, which causes an increase in permeability. 
The spreading tends to occur near x = 0, and the 
maximum fiber bending occurs near x = L (Fig. 13). 
This results in a deflection of  the x = L fluid away 
from the fiber layer, but allows fluid into the small-x 
region at the same (or even a higher) rate as the rate 
that occurs when the fibers do not  bend. 

Figure 13 illustrates the progressive bending of  the 
fibers as the stiffness S decreases for the L/H = 4 
surface. Each 'fiber' line drawn on the fiber surface 
represents many actual fibers. The number rep- 
resented per line depends upon ¢ ,  and HID. It is clear 
from the figure that the region near x = L is much 
less permeable to downward flow because of  the fiber 
angle and decreased porosity. The minimum porosity 
for the L/H = 4 surface was q~ -- 0.935, which cor- 
responds to ¢ = 0.95 when the fibers are straight. 
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Fig. 13. The effect of stiffness on the fiber shape (ReL = 200, L/H = 4, ~b = 0.95, H/D = 20). 

To summarize, Figs. 10-13 show that the bending 
of the fibers begins to have an effect when the stiffness 
number  S drops below a certain, critical level. We 
recorded this effect quantitatively, by first defining the 
critical stiffness number  Sc as the S value where m 
drops to 90% of its value for inflexible fibers : 

m(S = So) = 0.9m(S ~ o0). (50) 

We then determined numerically the m(S) dependence 
for a series of 12 cases, of which only three are illus- 
trated in Fig. 10. The resulting Sc values can be cor- 
related as 

for which the C coefficient is reported in Fig. 14. The 
analytical form of equation (51) was derived based 
on equation (38) and the hypothesis that the critical 
stiffness So corresponds to a critical fiber angle ~c. 
Figure 14 shows that in the parametric domain con- 
sidered the C coefficient does not  depend sys- 
tematically on ReL. The most we can say is that C is 
a number  of order 0.4. That  a correlation of type (51) 
should hold is suggested also by Fig. 4, which implies 
that the dimensionless pressure field is largely insen- 
sitive to ReL. 

Setting C = 0.4 in equation (51) allows us to predict 
Sc to within a factor of 2 for all the cases tested. We 
expect this relationship to hold for high ReL flOWS 
where the viscous effects on the pressure field will 
continue to be negligible. Equation (51) should break 
down at sufficiently low ReL values, because in that 

C 
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$ 

0.1 - - ~ - - r - ~ N - - - ~  
10 2 10 3 10 4 

Re L 
Fig. 14. The C coefficient for the critical stiffness correlation 

(51)  (~b = 0 . 9 ~ ) . 9 5 ,  H/D = 20 and 50) .  

direction viscous effects become important.  Low Re L 
flows, however, are also characterized by little or no 
penetrating flow in the fiber layer, which makes these 
flows of considerably less interest. 

CONCLUDING REMARKS 
In this paper we investigated the interaction 

between a solid surface and an external flow when the 
solid is covered with a layer of fibers. The objective 
was to document the way in which the fiber layer 
properties affect the overall heat transfer and friction 
characteristics of the surface. 

In the first part of this study we considered the limit 
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in which the fibers are inflexible. The results presented 
in Figs. 4 -9  and  in the text show tha t  the fiber layer 
can alter significantly the wall characteristics,  
especially the overall  heat  transfer.  A peculiar  effect is 
due to the porosi ty  : at  porosit ies lower than  a critical 
value, the fiber cover  acts as an  insulat ion,  while at  
higher  porosit ies the fibers augmen t  the heat  t ransfer  
[Fig. 5 (b)]. We showed tha t  the effect of  the fiber cover 
can be correla ted in terms of  the flow fract ion tha t  
penetra tes  into  the fibers (Figs. 7 and  8). 

In the second par t  we examined the bending  of  the 
fibers, as they interact  with  the flow tha t  penetrates  
the fiber layer. The fiber bending  is governed by the 
nond imens iona l  :stiffness n u m b e r  S. We found  that ,  
when  S decreases below a critical value So, there is a 
sudden d rop  in wall friction, heat  t ransfer  and  pen- 
e t ra t ing flow fract ion (Figs. 10-12). The least sensitive 
to changes in S is the overall  heat  t ransfer  rate (Fig. 
11). We showed that  the critical stiffness n u m b e r  Sc 
values de termined numerical ly can be correlated [cf. 
equa t ion  (51) and  Fig. 14]. 
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